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Abstract-The elliptic energy equation for steady, two-dimensional incompressible flow over a flat plate 
with an unheated starting length is analyzed using matched asymptotic expansions where the boundary 
layer solution has been treated as the outer expansion corresponding to the leading-edge equation as the 
inner expansion. It has been revealed that the linear velocity profile of Aow occurs near the leading-edge 
of the heated part of the plate. This new technique for solving elliptic-to-parabolic equations involves 
stretching two different scales for two independent variables in the inner expansion. Results are applicable 
to the region where boundary layer theory breaks down, which is particularly interesting in microscale 

heat transfer. 

1, INTRODUCTION 

SITUA~~NS arise in contemporary microelectronic 
and microstructure design which are beyond the limits 
of classical boundary layer theory as first conceived 
by Prandtl in 1904. An example is a micro sensor 
used to measure air flow [I]. Although a conventional 
hydrodynamic boundary layer may be formed; if the 
heated section is small enough, the thickness of the 
‘thermal boundary layer’ may be equal to or even 
larger than the characteristic length of the heated 
element. However, since there is no effective non- 
boundary layer method available, von K&n&r inte- 
gral methods are still being extensively utilized [2]. As 
early as the late 1940s it had been noticed that the 
boundary-layer solutions are the first approximations 
to the Navier-Stokes equations including the energy 
equation. Since then, many attempts have been made 
to obtain higher-order approximations for these equa- 
tions in order to extend the solutions to lower 
Reynolds number flows or small length scale models. 
This search has led to the development of modern 
singular perturbation theory. 

The first monograph on the perturbation method 
devoted to fluid mechanics was written by Van Dyke 
[3] in 1964. A comprehensive review, at that time, for 
heat transfer applications appeared in 1969 [4]. In the 
same paper, Van Dyke predicted that the ieading- 
edge problem is more complicated for free convection. 
However, this problem has recently been solved by 
Pop et al. [5] and Martynenko et al. [6] with the aid 
of the method of matched asymptotic expansions, 
together with a deformed longitudinal coordinate. 
The key point is that for free convection the momen- 
tum and thermal boundary layers begin at‘the same 
point. Their investigations concentrated on matching 

the outer and inner expansions of the momentum 
equation. The singularity at the leading-edge of the 
thermal boundary layer is automatically removed. 

For forced convection over a flat plate with an 
unheated starting length, the momentum and thermal 
boundary layers have different origins, one of them 
is at x = -x0, the other at x = 0 (see Fig. 1). For 
simplicity, in this paper it is assumed that the flow at 
the beginning of the heated section has a Reynolds 
number high enough that higher-order approxi- 
mations of the momentum equations are unnecessary 
(i.e. the standard momentum boundary layer equa- 
tions are used). In other words, only the higher-order 
approximations of the energy equation will be con- 
sidered. The entire energy equation for two-dimen- 
sional steady flow of an incompressible viscous fluid 
with an initially uniform temperature past a flat plate 
is described with an elliptic-to-parabolic equation in 
the intervals -co -X x < co and 0 < y < cc 

co,,“t0,, = e,-0, (1) 

where E denotes a small parameter and the subscripts 
stand for partial differentiation with respect to the 
variable indicated. In this paper, equation (1) is solved 
with suitable boundary conditions. The detailed deri- 
vations of the energy equation with form (1) can be 
found in Section 2. 

In the first approximation, the term involving E is 
neglected. The remainder of the equation is a para- 
bolic partial differential equation. Since the boundary 
conditions on the plate depend on an independent 
variable, X, a nonsimilarity equation results from 
using the Blasius similarity transformation. A his- 
torical review for nonsimilar Bows before 1970 is given 
by Cheema [7]. Chao and Cheema [S] developed a 
series solution for nonsimila~ty equations in wedge 
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NOMENCLATURE 

Ai Airy function 

I,’ 

function in the Blasius equation (5) 

heat transfer coefficient [W m * K ‘1 

H(x -a) Heaviside unit function defined by 

6 

R 

Dirac delta function defined by 
s’ I d(x) dx = I 
small parameter in differential equations, 

lIJ(Re) 
H(.w-a) = 0 when x < a; and 4_ r$y functions defined in this paper, 
H(r-u)= 1 whenx>a expression (37) 

0 modified Bessel function of the first kind 0, 0, 6 dimensionless temperature defined 

with parts v by (r-T,)l(T,-T,) 
k thermal conductivity [W m ’ K ‘J 0 outer expansion for elliptic equations 

Nu, local Nusselt number, h.u/lc 0 inner expansion for elliptic equations 

0 order symbol and outer expansion for elliptic-to- 

Pr Prandtl number, v/cc parabolic equations 

Re Reynolds number on unit length, U,jv 6 inner expansion for elliptic-to-parabolic 

RCJ, local Reynolds number, U, x/v equations 
T temperature [K] kinematic viscosity [m’ s ‘1 

T, temperature of heated elements [K] ; stream function 

TX> temperature of upstream [K] ‘1 inner variable for elliptic equations and 

x, y dimensionless Cartesian coordinates, outer variable for elliptic-to-parabolic 

outer variables for elliptic equations equations 

.YO dimensionless length of the unheated 

part, as a unit length in this paper 
X, Y inner variables for elliptic-to-parabolic 

equations Superscripts 

u dimensionless velocity along x-direction + x -+ u+ is equal to a+lim_,,,,x, where 

u, velocity of upstream [m s ‘1 x > 0 

2 dimensionless velocity along y-direction. - x --f a- is equal to a - lim,,, x, where 

x>o 
C composite expansion 

Greek symbols i inner expansion 

a thermal diffusivity [ml s ‘1 int integral methods. 

flow with a second-stage similarity transformation. equations after many transformations. In general, 

They concluded that there is no solution in closed however, the set of equations has to be reevaluated 
form except for the first two terms in the series. for each time and x-location except for a few very 
Theoretically, a local nonsimilarity technique, due to special cases. If a closed form solution is not found for 
Sparrow et al. [9, IO]. is suitable for nonsimilarity the nonsimilarity equations, obtaining higher order 

equations. In practice, however, it is not possible to approximations with perturbation techniques will be 
express higher-order derivatives of a discontinuous difficult since it is a tedious assignment to solve a set 
function in terms of classic primary functions. More of parabolic equations numerically even with high 
recently, Zubair and Kadaba [l l] introduced a group speed computers. In Section 3, the parabolic equation 
transformation method for unsteady mixed convec- is transformed into a set of ordinary differential equa- 
tion. That is, the original partial differential equations tions with transforms slightly different from Chao and 
can be substituted with a set of ordinary differential Cheema [8]. Then specjal solutions are assumed so 

FIG. I. Forced convection over a flat plate with an unheated starting length. 
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that those ordinary differential equations are trans- 
formed into a set of algebraic equations solved with 

a FORTRAN program of 30 statements. 
After the first approximation is substituted into the 

term Q,, in equation (1) the second approximation, 
which is the solution of a nonhomogeneous parabolic 
equation, can be obtained by the technique described 
above. However, it can be shown that the solution is 

more singular than the first as x + 0. Although it is 

possible to move the singularity of the secular term to 
left of x = 0 with Lighthill’s technique, that is, the 
PLK method [3], it does not make any sense in this 
physical situation. The source of nonuniformities is 

that equation (1) has the form of a small parameter 
multiplying the highest derivative with respect to x. 

The first approximation involves the loss of one 
boundary condition in the x-direction so that the solu- 
tion does not satisfy all of the boundary conditions.? 
For higher approximations, a singularity at x = 0 

might be removed with Lighthill’s technique, but 

unfortunately, the lost boundary condition still can- 
not be satisfied. As pointed out by Nayfeh [12], the 
method of multiple scales can be applied to problems 
which can be or cannot be treated by Lighthill’s tech- 
nique and the method of matched asymptotic expan- 
sions. However, the determination of the different 

scales in equation (1) is complicated. 

In terms of the principle of least degeneracy in 
matched asymptotic expansions [3], the inner expan- 

sion of equation (I) is obtained by stretching the inde- 
pendent variable .Y = EX 

0, = o,, (2) 

where 0 is a function of X and y. This transform is 
subject to deficiencies on several points. First, the 
solution of equation (2) exponentially convergences 

for X < 0 so that it satisfies the lost boundary 
condition. It does not, however, decrease for X > 0. 

Therefore, it is impossible to match with the outer 
solution. If the boundary conditions were defined in a 
finite interval, Nayfeh [12] has shown that for ordinary 
differential equations, equation (2) is uniformly valid 
near the neighborhood of x2 for a finite interval 

.x, < x < x2. In other words, the location of the 
boundary layer occurs as x-+x2. The same con- 

clusion recently has been reported for elliptic-to-para- 
bolic equations by Lagerstrom [13]. The situation is 
different, however, if the domain of x is infinite which 
is often the case for fluid dynamics and convection 

heat transfer. Only if x approaches zero, is it possible 
for the term 8,, in equation (1) to be of the same order 
as the other terms. This implies that the location of 

the boundary layer is near the point x = 0, i.e. it is an 
internal boundary layer. Therefore, although equa- 
tion (2) might be a valid inner expansion for a finite 
interval, it cannot be applied to infinite situations. For 

t It will be shown in Section 3 that the omitted boundary 
condition is at x --f - cc. 

these problems, it is obvious that the principle of least 
degeneracy must be generalized. 

The generalized principle of least degeneracy 
developed in this paper states that both of the highest 
derivatives and at least another term in the elliptic-to- 
parabolic equation (1) should be kept in the inner 
expansion so that the solution will exponentially 
decay along all directions. The reason why the highest 

derivative with respect to y cannot be neglected was 
explained in the previous paragraph. If the terms on 

the right-hand side of equation (1) are neglected in 
the inner expansion, it leads to Laplace’s equation. Its 

general solution will be Qxf iy) or @(y k iw), which 

denotes that there is no exponential decay along at 

least one (x or JJ) direction. The technique introduced 
here may be traced to the initial work on the birth of 

boundary layers by Grasman [14] and Eckhaus [15]. 
With this principle, two different scales, ?I = sOLX, and 
JJ = aBY, for stretching two independent variables 
have been proposed in the inner expansion of equation 

(1). This yields two algebraic equations for deter- 
mining the indices CI and /? of E. It is very interesting 
to note that the linear velocity profile of flow can be 
derived directly from the inner expansion. The 

detailed process has been included in Section 2. The 
partial differential equation corresponding to the 

shear flow will be solved with Fourier transforms in 
Section 4. 

2. BASIC GOVERNING EQUATIONS AND 

MATCHED ASYMPTOTIC EXPANSIONS 

The problem considered here corresponds to a finite 
or semi-finite flat plate under steady incompressible 
two-dimensional flow with an unheated starting 

length x0 in the rectangular Cartesian coordinate sys- 
tem (x,y). Suppose that the upstream has a constant 
velocity U, and temperature T,. Since the stream 

function may be defined by $ = EJ(~(.x+x~))/~‘(~), 
the components of dimensionless velocity are 

u = $, = .&, L’= -$., = -E(,f‘--~~)iJ(2(.U+-Y,,)) 

(3) 

where 

‘I = ,+J(2(x+x,)) and E = l/J(Re) (4) 

Re = Urn/v, which is much larger than one, denotes 

Reynolds number based on a unit length. It should be 
stressed that equation (4) is the well-known Blasius 
similarity transformation based on the boundary layer 

theory due to Prandtl. The first-order approximation 
of the momentum equations can be simplified into the 
Blasius equation [3] 

.G,, +ff,, = 0. (5) 

With no-slip conditions on the plate and an upstream 
condition which may be formulated by f (0) = 
f,(O) = 0, and,&(m) = 1, the solution of equation (5) 
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can be written as Weyl’s expansion [ 161 O,,+,f‘PrO,-2(x+x,)PR,/,0, 

(ha) 
,t = 0 

where D, satisfies the expressions 

I 
(3n+2)(3n+ 1)3nD,, = ‘c (3i+2)(3i+ l)D,D,, , hi 

,=” 

20, = 0.469600. (6b) 

The dimensionless energy equation for steady two- 
dimensional flow of an incompressible viscous fluid 
with constant temperature and small Mach number 
past a flat plate is 

PruU,+PrvOl. = E2(0,, +(I,,). (7) 

The appropriate boundary conditions in the Cartesian 
coordinate system are 

U(x, y) = H(x), y = 0 ; (8) 

8(x, y) = 0. y-co; (9) 

B(x,y) = 0, .X--r --;c; (10) 

Q&Y) = 0, x+cx,;J>o (11) 

where Pr denotes Prandtl number and H(x) the Heavi- 
side unit function. It is the purpose of this paper to 

deal with governing equation (7) subject to boundary 
conditions @-(I 1) with the method of matched 
asymptotic expansions. The outer expansion of the 

elliptic equation (7) can be derived by neglecting the 
terms containing the small parameter, E 

UU., +vH, = 0. (12) 

Equation (12) is homogeneous with a constant tem- 
perature in the upstream which is similar to inviscid 
flow in the momentum equations, thus its solution 

has been proven to be II = 0 [17]. Because the highest 
derivatives are lost in the outer expansion (12) the 
solution is incorrect near the plate, i.e. boundary con- 
dition (8) is not satisfied. 

In order to obtain a uniformly valid solution near 
the plate, Prandtl simplified the NavierStokes equa- 

tions by stretching an independent variable, _r = EY. 
His procedure, which he based on physical intuition, 
is known as boundary layer theory. In modern per- 
turbation theory, this method has been named the 

inner expansion and has been mathematically proven 
by Van Dyke [3]. The boundary layer theory is also 
applicable to the energy equation (7) based on the fact 
that the highest derivatives are multiplied by a small 
parameter which is similar to the Navier-Stokes equa- 
tions. However, it should be noted that since the 
boundary condition (8) depends upon the x-direction, 
the solution of the inner expansion is also a function 
of x. Therefore, with the same transformation (4) and 
using expression (3) to transform u and L’, equation 
(7) can be changed into the elliptic-to-parabolic 
equation 

where 0 = 0(x, II) shows that one of its independent 

variables has been stretched. It is obvious that by 

neglecting the terms in equation (13) which include 
the small parameter E, the equation will degenerate 
into a parabolic equation in the x-direction. Since 
the solution of this parabolic equation satisfies the 
boundary condition at the plate, it is much better than 

the outer expansion (12). Assuming that the dimen- 
sionless temperature 0 can be expanded in the form 

0(&r?) = 0,(x,rl)+E20*(X,~)+O(E4) (14) 

(where the order symbol 0 denotes the smaller high- 
order terms), equation (14) can be substituted into the 
governing equation (13) and equating like powers of 

c: yields a set of iterative equations 

(16) 

Equation (15) is the familiar nonsimilarity boundary 
layer equation which is the first-order inner approxi- 

mation corresponding to the original elliptic equation 

(7). Equation (16) is the second-order inner approxi- 
mation. According to the iterative process, the prob- 
lem seems to be totally solved. However, since equa- 
tion (15) is parabolic, a boundary condition along the 
x-direction is still lost. Although the accuracy of the 
solution will be increased along the surface of the plate 

if the higher-order approximation (16) is included, 
the lost boundary condition still cannot be satisfied. 
Following the same idea as Prandtl, it is found that 
when x is of order sz, the orders of the two sides of 

equation (13) are similar. This implies that the solu- 
tion from boundary layer theory has become invalid 
near the leading-edge of the heated part of the plate. 
Previously, this phenomenon has not been quanti- 
tatively verified. On the other hand, it is not difficult 
to show that if the solution of equation (15) is singular 
at x = 0, the solution from equation (16) is more 
singular at the same point. Although Kuo [IS] 
attempted to move a similar singularity in the momen- 
tum equations with Lighthill’s technique, this method 
will fall here. For instance, assume that the singularity 
at x = 0 is moved to the left. Since the governing 
equation (7) is linear, superposition can be applied to 
predict the heat transfer for any arbitrarily specified 
plate temperature. In the case of a finite heated plate. 



Composite expansions on forced convection 3219 

singularities will occur within part of the plate. This indices of equation (18) both be zero. Two algebraic 

is physically inconsistent. equations are immediately obtained 

Boundary layer theory offers a clue to finding a 

uniformly valid solution near the leading-edge. For 
this purpose, the concept of a boundary layer inside 
the conventional boundary layer is introduced. The 
conventional boundary layer solution is treated as the 
outer expansion of equation (13) which is uniformly 
valid along the surface of the plate except for the 
region near the leading-edge. The inner expansion 

might be found by stretching the independent 
variable, .Y = E’X, where 2 is a parameter larger than 
zero. The principle of least degeneracy, due to Van 

Dyke [3], states that the inner problem must include 
in the first approximation any essential elements omit- 
ted in the first outer solution. As an application of the 

principle, at least one term of the right-hand side in 
equation (13) should be involved in the inner expan- 
sion. Thus s( must be 2 so that the first-order inner 
expansion from equation (13) can be formulated by 

3fl--r = 0; 2-2a+28 = 0. (19) 

A straight-forward calculation shows that the indices 
are CI = 3/2 and p = l/2. The resulting first-order inner 
expansion from equation (18) is 

Pr,f,O, = OAx. (17) 

The solution, 0 = C,exp(Pr,fiX), where C, is an 
arbitrary constant, exponentially vanishes as X + 

G),,+&,-hYG, = 0. (20) 

Equation (20) has obvious physical significance. The 

first two terms represent heat diffusion near the lead- 
ing-edge. The last term denotes heat convection. In 
this region the velocity field varies linearly with the 
distance from the surface of the plate. The form of 
equation (20) is similar to the results derived by Lin 

[19] and Ackerberg et al. [20] where they considered 
shear flow over a plate. However, equation (20) is 

expressed in terms of the transformed variables (X, Y) 
which is different from shear flow in the Cartesian 

coordinate system (x, _r) since the transformation, 
s = s3”XJ(2x0) and y = E’ *Y~‘(2(x+x,)), is non- 
linear. 

_ m, but increases as X -+ m, which does not satisfy 

the matched condition. In other words, equations (1.5) 
and (17) cannot be matched in a public regime. It is 
obvious that although the principle of least degener- 
acy is a necessary and sufficient condition in the first- 
order inner expansion for ordinary differential equa- 
tions, it is not enough for elliptic-to-parabolic equa- 

tions where the principle can be treated as a necessary 
but not sufficient condition. The reason is that the 

principle only explains how to treat the lost terms in 
the outer expansion, but it is vague about which other 
terms of the outer expansion to retain in the inner 
expansion. The new principle, introduced here, states 
that both of the highest derivatives and at least 
another term in the elliptic-to-parabolic equation (13) 
should be kept in the inner expansion for solving 

elliptic-to-parabolic equations. Therefore the two 
independent variables in the equation must be 
stretched at the same time. The physical explanation 
is that although the thickness of the thermal boundary 
layer is very small, the thickness of the boundary layer 
near the leading-edge is much smaller so that as .u is 
stretched, the other variable r~ should also be enlarged. 
As an example we assume that two independent vari- 
ables must be stretched, that is, x = .?XJ(2x,J and 
~1 = c”Y where x. /I > 0. By using these relations and 
Weyl’s expansion (6) equation (13) can be expressed 
in terms of two new variables 

The differential equations governing energy trans- 
fer in the different domains can be found in Fig. 2. 
Since the neighborhood about the point x = 0 is inside 
of the boundarys x = -m and cxj, it can be defined 

as an internal boundary layer. Equation (20) also can 
be named the internal boundury Iuyer equation. Table 

1 summarizes the types of expansions which have been 
utilized to solve equations (7) and (13). Notice that, 
whereas previous methods treated elliptic equations, 
this method first transforms the equation to an cllip- 
tic-to-parabolic enc. Then the inner expansion of the 
elliptic-to-parabolic equation will degenerate into an 

elliptic one again. However, the degeneration will sim- 
plify the orginal equation, which has power series 
coefficients, into one with a linear coefficient. equation 
(20). Eckhaus [15] has noted that the terminology of 
inner and outer expansion is sometimes confusing due 
to its connotation from pure mathematics. Since the 
terminology is applied extensively in fluid mechanics 
and heat transfer, however, the terms inner and outer 
expansion are used here. Note also that the boundary 
layer equation (15) is an inner expansion of the elliptic 

equation and an outer expansion of the elliptic-to- 
parabolic equation. Since the internal boundary layer 
equation (20) is an inner expansion of the elliptic-to- 
parabolic equation, it is obvious why it also can be 
called a boundary layer within a boundary layer. 

--Y~,~+“+&, = -&XL.~2~2a+ZB+O(~) (18) 

3. SOLUTION OF THE BOUNDARY 

LAYER EQUATION (15) 

Since the outer expansion of the elliptic equation 

where h = 2D,j(2s,,)Pr = 0.6641 IJx, Pr and 6 = 
6(X. Y) which stands for an inner function. If 
a ,< [j. the term 6,, will be canceled which violates 
the principle of least degeneracy. Therefore, c( must 
be greater than [j. With our new principle, let the 

(7) is identical to zero, the 
equation (15) are obtained 

(8)~( 11) 

boundary conditions for 
directly from conditions 

q=o; (21) 

rl-‘ml; (22) 
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FIG. 2. Governing differential equations in the different thermal domains. 

0, (x, y) = 0. .Y + - z : (23) 

O,\(X,Y) = 0. Y + w ; y > 0. (24) 

The governing equation (15) is parabolic in the X- 
direction and therefore one of the boundary con- 
ditions (23) or (24) must be dropped. After a second- 
stage similarity transformation converts the equation 
into a set of ordinary differential equations of second- 
order in terms of a new independent variable, [, the 
remaining boundary condition (23) or (24) will also 
be neglected. In fact, all similarity transformations 
from parabolic equations to ordinary differential 
equations involve the loss of one boundary condition. 
Fortunately, the boundary condition will be satisfied 
automatically after the solution is found for most 
boundary-value problems. We will show this con- 

clusion later. The proposed transform is defined by 

i = r/(.u,,/.x) ’ %. (25) 

Equation (I 5) can be expressed in terms of x and < 

kV’(x,,/x) ‘0, .+,f’@ . 

= 2(1+x,,/x).f;-(aO,~-O,.13). (26) 

Inserting expression (6) for ,f’ in terms of the new 

coordinates (x, [) into the previous equation gives 

/ \U i / 
Prm’ @I,~.+ C (-l)‘iD,r;i”+Z .’ 0, 

,I= 0 t ! .yn 

=2 ;;+I (.Xo,\-o,:~/3) i: (-1)“(3nS-2) 
C 1 Il__ 0 

which can be solved by a series expansion. Suppose 

that the power series has the form 

where 0, is a function of the single variable, <. Sub- 

stituting this solution into equation (27), and equating 
the coefficients of the homogeneous powers of X, a set 
of ordinary differential equations results. The cqua- 
tion corresponding to thejth power of s is 

Pr ’ 0,:; +(4D,,i’/3)0,c -4D,,[,j0, 

, 
=:~~,(-l)“(,i-l-k,n, , r.;‘i+‘[(6k+4)DL 

x[(2k+lOj3)D,+,;‘-(2k+7/3)D,J. (29) 

Considering the regime of .y > 0, boundary conditions 
(21) and (22) can be simplified into 

U&,0) = I ; O&, co) = 0,(.x,0) = 0,(x, 22) = 0; 

i> I. (30) 

Boundary conditions (23) and (24) along the x-direc- 
tion have been dropped. When .j = 0. the solution of 
equation (29), O,, which satisfies boundary conditions 
(30) has the closed form 

I 
Cl,, = E 

i 
exp (-4[ ’ Pr D,,/3) d[ 

where 

Table 1. Types of expansions for the thermal energy equation 

Eckhaus [IS] 

Elliptic equation (7) 
Regular expansion (I 2) 

Local expansion 
intermediate boundary layer 

Local expansion 
internal boundary layer 

Van Dyke [3] 

Elliptic equation (7) 
Outer expansion 
inviscid flow (12) 
Inner expansion 

boundary layer (I 5) 

Ma ef al. (this paper) 

Elliptic-to-parabolic (13) 

Outer expansion 
boundary layer ( 15) 

Inner expansion 
internal boundary layer (20) 
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‘S 
z 

E=l exp ( -4i3 Pr D,/3) d[ = 0.527226 Pr ‘!3. 
0 

(31) 

When j 2 1, the solution Q, can be expressed in the 
form of a power series 

2,~ I 
0, = E 1 C,,, [ 3r+ ’ exp ( -4c3 Pr D,/9) (32) 

I-0 

where C,,, are a set of undetermined constants. Sub- 
stituting solution (32) into the ordinary differential 

equation (29) a set of algebraic equations can be found 

2,m ? 
(3/Pv) 1 c,,,, , i X’+2(3i+4)(i+ 1) 

,=” 
+ I 

-4D, C C,,,[“+*(j+i+l) 
r-0 

= (-l)‘~“~‘[(2j+4/3)D,~3-(2j+l/3)Dj_,] 

,-? 
+ 1 {(-l)k(j-k-l)[3k+2[(6k+4)Dx 

k = 0 
*o’-Lj- 3 

-i’(6k+ lW,+ ,I 1 C,-,- ,.t,3i> 
,=” 

1-2 

+ c {(-1)“~‘“+‘[(2k+l0/3)D,+,~3 

-4Pr D,[ ‘131). (33) 

Comparing coefficients in front of powers of [, the 
C,,, can be obtained immediately with a FORTRAN 
program of 30 statements. The temperature field from 
equations (28) and (32) is 

%- O,(x,[) = E 
is 

exp ( - 41 3 Pr D,/3) d[ 

exp (-41 3 Pr Do/9)(x/xo)’ ,=-I ,=" 1 
(34) 

The local Nusselt number can then be calculated by 

Na.,<>+\ = -(-G+x)i,@I;I;=” 

= -0.3728 Re,!$2,y ,(Prx0)“3 f C,.dx/x0) (35) 
,=O 

where the coefficient, C,,, is defined to be - 1. The 
coefficients, C,,, for various Prandtl numbers have 
been listed in Table 2. The series solution (35) is diver- 
gent for .x/x0 > x*, where x* denotes the radius of 
convergence of the series which can be determined by 
means of a DombSykes plot [21]. However, a simpler 
rule applied here is that x* = Pr for Pr < 0.5 and 
x* = 1 as Pr > 0.5. In order to improve this type of 
series, Van Dyke [21], Aziz and Na [22] present many 
techniques, such as Euler transformations, extraction 
of singularities and Shanks transformations. Com- 

putational experience shows that a better technique is 
to move the summation in equation (35) into the cubic 
root before utilizing a Euler or Shanks transforma- 

tion. With a Euler transformation, however, the local 
Nusselt number in equation (35) can be expressed by 
the explicit formula 

NM rc,+x = 0.3728 Re.J,$ 

where 

x 
Y- x+x*x; 

Table 2 lists the coefficients, B, for various Prandtl 
numbers. For comparison of the methods, a new func- 
tion from equation (36) is defined by 

Of course, 4r is identical to the solution of a uni- 
formly heated plate, i.e. a self-similar flow which can 
be obtained exactly with a Runge-Kutta algorithm. 
Taking x0 as a unit length, Table 3 lists a summary of 

the results of 4n; from these methods and von Karman 
integral methods which is 

4:“’ = ;!$ = 0.3313 pr1:3 
x0+ ‘I 

[i-(3J4]-‘~3; 

Nu,,~+ r 
4:“‘=-= 0.3313 Pr’j3 

Yo+ ‘; 
(38) 

It should be noted that the error increases with 
decreasing Prandtl number for differential solutions. 
The reason, as shown by Chao and Cheema [8] is that 

Weyl’s expansion (6) has a finite radius of conver- 
gence. However, the series expansion in this paper is 
successful for 0.1 d Pr < 100 since the maximum of 

the errors is less than 2%. As reported by Chao and 
Cheema in the same paper, the errors for 4,) reported 
in Table 3, are the upper bound of error so that we 
can predict that the error from $X will decrease when 
x approaches the leading-edge. The resulting profile, 
4, from integral and differential methods are plotted 

in Figs. 3-5 corresponding to Pr = 0.1, 1 and 100, 
respectively. 

The Taylor expansion of the integral solution (38) 

is obtained near the leading-edge, 4:“’ = 
0.3646(Pr x0/x)“’ + 0(x*“). Comparing this result 
and the first term of the series (35) the relative error 
is about 2% which is independent of Prandtl numbers. 
It is not difficult to conclude from this analysis and 
the results in Table 3 that Nusselt numbers from the 
integral method are accurate to about 2% for non- 
similarity flows in the region 0.5 < Pr < 100. 
However, when boundary layer theory breaks down, 
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Table 2. Coeficients of nonsimilarity boundary layer solutions (35) and (36) 

0 
I 
1 

; 

4 
5 
6 
I 
x 
9 

IO 
II 
12 
I3 
I4 
I5 
16 
17 
IX 
19 
20 
?I 
22 
23 
24 
25 
26 
27 
2X 
29 
30 
31 
32 
li 
.ib 
35 

Pr = 0.1 Pr = I 

- C,,,, B, ~ (.,.I, 4 

O.IOOOOE+OI 0.10000E+01 0.l0000E+OI 0.10000E+01 
0.1527XEfOO -0.95417E+OO 0.27778E+OO -O.l6667E+OO 
O.l5432E-01 0.116328-02 -0.90679E-01 -0.40556E-01 

-0.31553E-01 O.l0862E--02 0.50326Ep01 -O.l9275E-01 
-0.71817E-02 O.i0044E-02 -0.33695E-01 -O.l1524E-01 

0.67127Ep01 0.91965E-03 0.24859E-01 -0.77659Ep02 
-0.3649OE-01 0.83374E-03 -O.l946lE-01 -0.56347E-02 
-0.23113E+OO 0.74845E - 03 O.l585XE-03 -0.42994E-02 

0,35397E+OO 0.66533E-03 -O.l330lE-01 -0.34025E-02 
O.l526lE+Ol 0.5857OE ~ 03 O.l140lE-01 -0.27685E-02 

-0.48455E+Ol 0.5106lE-03 -0.99400E-02 -0.23023E-02 
-O.l4499E+O? 0.440X4E - 03 0.87852Ep02 --O.l9487E-02 

O.X8556E+O2 0.37690E-03 -0.78519E-02 -O.l6734E-02 
0. I6990E + 03 0.31904E-03 0.70836E-02 -O.l4547E-02 

-0.31214E+04 0.26728E ~ 03 -0.64412E-02 -O.l2777E-02 
-O.l6610E+O4 0.22146E-03 0.5897OEp02 -0.1 1323E-02 

0.64360E +05 O.IXl28E-03 -0.54306E-02 -0.10112E~02 
-0.35328Ef05 O.l4637E-03 0.50270E-02 -0.90932E-03 
-0.23933EfO7 O.l1625E-03 -0.46746E-02 -O.X2264E-03 

0.52959E+O7 0.9047OE -04 0.43646E-02 -0.74824E-03 
0.10571E+09 0.68534E ~ 04 -0.40X996-02 -0.68387E--03 

- 0.46675E + 09 0.49986E ~ 04 0.3845OE-02 -0.62777E-03 
-0.5363OE+ IO 0.34392E -04 -0.36255E-02 -0.57856Ep03 

0.405l8E+ I I 0.21353E-04 0.34276E3.02 -0.53513E-03 
0.2992XEf I2 O.l05lOE-04 -0.32486E-02 mm0.49660E-03 

-0.3763lEf I3 0.15459E ~ 05 0.30858E-02 -0.46225Ep03 
-O.l7014E+ I4 -0.58214E-05 -0.29372E-02 -0.43147E-03 

0.3Xl85E+ I5 -O.IIX36E-04 0.28012E-02 -0.4037XE-03 
1).78094E+l5 -O.l6709E-04 -0.2676lE-02 -0.3787X8-03 

-0.4246lE+ I7 -0.2062lE-04 0.25609E -02 -0,35612E-03 
O.l7915E+ I7 -0.23729E -04 -0.24543E-02 -0.335518-03 
0.5156lE+ I9 -0.26164E-04 0.23556E --02 -0,3167lE-03 

-O.l5929E+20 -0.28037E-04 -0.22638E-02 -0,2995OE-03 
-0.6707lE+21 - 0.29444E - 04 0.217X38-02 -0.2837lE-03 

0.4369lE+22 -0.30465E --04 -0.20986LG02 -0.26919E-03 
0.97419E+2? -0.31165E-04 0.20239E -02 -O.?5580E&03 

integral solutions will lead to a tremendous error which 

is reported in next section. 

4. SOLUTION OF THE INTERNAL BOUNDARY 

LAYER EQUATION (20) 

The boundary conditions of equation (20) can be 

constructed with Van Dyke’s asymptotic matching 
principle: the l-term inner expansion (of the l-term 
outer expansion) is equal to the l-term outer expan- 
sion (of the l-term inner expansion). However, the 

outer expansion of the elliptic-to-parabolic equation 
should be applied corresponding to the inner cxpan- 

Pr = 

~ CT, 0 

0.10000E+01 
0.29153EfOO 

-0.97162E-OI 
0.544828-01 

-0.366938-01 
0.271698-01 

-0.213218-01 
O.l740lE-01 

-O.l4610E-01 
O.l2532E-01 

-O.l093lE-01 
0.96633E-02 

-0.86376E-02 
0.77923Ep02 

-0.70849E-02 
0.64853E -02 

-0.5971 IE-02 
0.55258E-02 

-0.51369E-02 
0.47946E - 02 

--0.44913E--02 
0.42208E - 02 

-0.39783E-02 
0.37598E-02 

-0.35619E-02 
0.33820E-02 

-0.32179E-02 
0.30675Ep02 

-0.29293E-02 
0.28020E - 02 

-026842E-02 
0.2575 I E ~ 02 

-0.24737Ep02 
0.23793E-02 

-0.2291 IE-02 
0.22087E ~ 02 

IO0 

B, 

0.10000E+01 
-O.l2542E+OO 
-0.3652lE-01 
-O.l825lE-01 
-O.l1214E-01 
-0.76960E-02 
-0.56606E-02 
-0.4366lE-02 
-0.34865E-02 
-0.285X7E-02 
-0.23932E-02 
-0.20376E-02 
-O.l759lE-02 
-O.l5365E-02 
-O.l3554E-02 
-O.l2060E-02 
--0.10811E-02 
-0.97557E-03 
-0.88544E-03 
-0.807XIE-03 
~ 0.74044E ~ 03 
-0.68154E-03 
- 0.62972E - 03 
-0.58388E-03 
-0.54309E-03 
- 0.50664E - 03 
--0.4739lE-03 
~ 0.444408 - 03 
-0.41769E-03 
-0.39343E -03 
-0.37133E-03 
-0.351 l2E-03 
-0.33260E-03 
-0.31558E-03 
- 0.299898 - 03 
-0.28540E-03 

sion (20) as the inner variable, X approaches infinity. 

The reason is that the internal boundary layer equa- 
tion (20) governs the majority of the negative .x-axis 
including the leading-edge when q is very small and the 
boundary layer equation governs the entire positive X- 

axis excluding the leading-edge when ‘1 is very small. 
Therefore, matching along the -\--direction should be 
performed with the boundary layer solution (34) 

@cc?, Y) = O,(O,J) = 0. (39) 

On the other hand, the outer expansion of the elliptic 
equation should be applied corresponding to the inner 
expansion (20) when the inner variable Y approaches 

Table 3. Similarity boundary layer solution, 4, = Nu,,~, ,,iRr:,,t , 

PI 0. I 0.72 

Exact 0.1400 
Integral method (38) 0.153x 
Error 9.86% 
Euler transform (37) 0.1423 
Error I .64% 
Shanks transform (35) 0.1423 
Error I .64% 

0.2956 
0.2970 
0.47% 
0.2980 
0.81% 
0.2966 
0.34% 

0.3321 I.572 
0.3313 1.538 

-0.21% - -2.16% 
0.3339 I.581 
0.54% 0.57% 
0.3323 I.574 
0.06% 0.13”/0 

100 
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- Euler transform (37) 

....... Integrdmeaod(38) 

R = 0.1 

FIG. 3. Nonsimilarity boundary layer solution, Cp, = 
Nil ,O,Jk$, 

4 
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1 

0.332 
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FIG. 4. Nonsimilarity boundary layer solution. 4, = 
NU ,,,,JRe$,. 

Euler trdorm (37) 

-...... Intepl method (38) 
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box 

FIG. 5. Nonsimilarity boundary layer solution, 4, = 
N~,o+,lR~,‘;$.~. 

infinity which is the public regime of both expansions, 
that is 

6(X, Co) = 0(x, 0) = 0. (40) 

The physical significance of the matched conditions 
(39) and (40) are that the temperature at these inter- 
faces are continuous. The other two boundary con- 
ditions can be obtained from equations (8) and (IO) 

8(X. 0) = H(X) ; (41) 

&--Ti. Y) = 0. (42) 

With the aid of the Fourier transform defined by 

6,(X, Y) exp (sXi) dX (43) 

equation (20) and boundary conditions (40)-(43) can 
be expressed in terms of s and Y [23] 

F,,+bs 
c ) 

Yi-z F=O (44) 

F(s, m) = 0 (45) 

F(s, 0) = J(7rj2) 
i :I es(s) + I, (46) 

where 6(s) denotes the Dirac delta function. Equation 
(44) satisfies boundary conditions (39) and (42). Using 

substitution of variables, equation (44) can be trans- 
formed into a second order ordinary differential 

equation 

F;,--,FF= 0 

where 

i”=b “3s” ’ exp (ni/2)( Y+is/h). (47) 

One of the linearly independent solutions of equation 
(47) may be expressed in terms of an Airy function. 
Ai or two modified Bessel functions of the first kind 

with fractional parts I _ ,, x and I,:,, respectively [24] 

F(s, Y) = M(s)Ai(V) = M(.&‘tI[I- ,.3(i)-I,.lCi)l 

(48a) 

where M(s) is an unknown function and 

q = i; exp ( - 2ai/3), 5 = 2q3:‘/3 ifs > 0. 

(48b) 

In fact, s is defined on the entire real-axis, but 5 in 
equation (47) is a complex independent variable. 
Therefore solution (48b) represents the case s > 0. 
For the case s < 0, it is quite clear that < in equation 
(47) is a conjugate complex number which leads to 
the conclusion that q in equation (48b) also should be 
a conjugate variable, that is 

q = < exp (2ni/3), < = 2qi”/3 ifs < 0. (48~) 

Letting Y + x: in equation (47), equation (48) can be 
written as 

q- Yexp(-rci/b) and [- Y”‘exp(-ni/4) 

ifs>0 



q - Yexp (G/6) and < - Y’;’ exp (~$4) 

if s < I). (4%) 

From these results and asymptotic expansions of the 
Bessel functions, the boundary condition (45) is satis- 

fied automatically by solution (48). Thus the second 
linearly independent solution of equation (47) is not 
required. The boundary condition (46) may be applied 

to find the unknown function, M(s) in equation (4%). 
The result is 

F(.r. Y) = N(s, Y)J(n/2) 6(s)+ -k 
i ‘I 

(5Oa) 
ns 

where 

N(.s, Y) = 
A@’ 3.s’ 3 exp (-7ri/6)( Y-i-is/h)] 

Ai[s4,” exp (7c~/3)D?? ‘1 

ifs>0 (5Ob) 

A@ “‘.s”’ exp (-5rri/6)( Y+is/b)] 
N(.s, Y) = --Ailp-- ----- 

exp ( - nij3)/6’ ‘1 

ifs < 0. (5Oc) 

With inversion of the Fourier transform defined by 

F(s, Y) exp (--SK) ds (51) 

the inner expansion can be expressed as 

x exp ( -s.Yi) ds 

exp(-sXh’ ‘i) ‘ 
X 

s 
---- d-2:, 

X 
Ai[s ’ ’ exp (~i/6)( Yb ‘,’ -is)] 

,4@“‘” exp(-G/3)] 

exp (.sXh ‘, ‘i) 
x ~ --- ds. (52) 

s 

In order to obtain the Nusselt number, differentiation 
of 6 with respect to Y may be performed at Y = 0, 
that is 

h I.? ’ AW’ exp (nij3)J =. . s -----~- ~~~~~- - -- 2n ,, A@+’ exp (ni/-?)] 

x exp(--sXb”‘i) 
--- ~~ ds exp(xii3) ,\.I 3 

h,Z 

+ 27t- 

where Ai’ represents the differentiation of Ai. The 

convergence of the integrations in equation (53) is 
very slow. However, it may be improved by means of 
the Cauchy residue theorem and complex variables 
1231. According to the definition of the Airy function, 
its zeros lie on the negative real axis, that is 

Ai(-s,)=O; where i== 1.2,3 ,_._ (54) 

Table 4 lists the first 32 values of s, found by LMSL 
[25]. Larger zeros can be obtained by expressing Ai in 
terms of the asymptotic expansion of Bessel functions 
of the first kind [24] 

From triangle identities, the solution of equation (55) 
is found to be 

sj - ($-~r~)‘~. as,j+ X. (56) 

When ,j = 32, the result s, = 28.1832 from equation 
(56) is very close to the value in Table 4. After M, in 
equation (53) for X < 0 is expanded into the first 
quadrature of the complex plane, the integral contour 
is plotted in Fig. 6. Lt can be shown that integration 
along the paths CR and C, are equal to zero if R -+ :m 

and r + 0, respectively. The result around Z, = 
exp @/2)X, “’ is not equal to zero if r -+ 0. The appli- 

cation of Cauchy’s theorem gives the following 
formula : 

The same technique can be applied for M, in equation 

(53). In order to have the integration along the path 
C, be zero, the analytic continuation of M, is in 

the fourth quadrature (Fig. 6) where the integration 
around 2, = exp ( -rri/2)s, “‘is not equal to zero as r -+ 
0. The result is 

(57b) 

Substituting expressions (57) into equation (53) a 
simple solution is found 

The situation, X > 0 is also simifar except that the 
analytic continuation of M, is in the fourth quadra- 
ture, but Mz is in the first quadrature, which leads to 
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Table 4. Zeros of the Airy function, Ai( -s,) = 0 

j .Tj j 3 .i sI j $1 

1 2.33811 
5 7.94413 
9 11.9360 

13 15.3408 
17 18.401 I 
21 21.2248 
25 23.8716 
29 26.3788 

2 4.08795 3 5.52056 
6 9.02265 7 10.0402 

10 12.8288 11 13.6915 
14 16.1327 15 ? 6.9056 
18 19.1264 I9 19.8381 
22 21.9014 23 22.5676 
26 24.5103 27 25.1408 
30 26.9870 31 27.5884 

4 
8 

12 
16 
20 
24 
28 
32 

6.78671 
11.0085 
14.5278 
17.6613 
20.5373 
23.2242 
25.1635 
28.1833 

j 
” Ai’[s” 3 exp (-k/3}] exp ( -sXb”2) 3hl” 

----~ ~-- 
_ 

o Ai[s4,’ exp (-ni/3)] 
_ __jT ~__ d y 

Ntl 
‘Of \ 77 

s-‘- 
- J(x, + x) ~- E- i z 

442 

x exp (k/6) 

Ml! = :;‘1 
s 

’ Ai’[.?” exp (C/3)] exp (-sXh”‘) __~~ _.~_. _ __ 
- 0 .4i[.P’ exp (+/IS)] ,,,,- ds 

x exp ( - xi/6). (59) 

Substituting equation (59) into (53), with a suitable 
substitution of variables, 6, at the boundary Y = 0 
is 

x cos (-sXb”*J2/2+n/4) ds; (X > 0). (60) 

Although the result is still in the form of an integral, 
its convergence is exponential. The local Nusselt num- 
ber, I$,+, = -(x~+.x)~,~~]~,~, can be found 
from the previous equations, that is 

exp (-sXh “*J2/2) x .-.___. ~-------_-_-“~os 
( 

_ sxh “‘*J2 
___ ~_.._ s 2,3 2 

With the value of b in equation (18) and the outer 
variable x = r:“‘.X’J(2x,), equation (61) can be 
expressed by 

(x < 0) 

= - Re:;,i, 0.18342 ReJ(,” Pr” 

cos(w+x/4)ds ; 1 
tx ’ 0) (@.a) 

si 

FIG. 6. Contours of integration for the internal boundary 
layer solution (53). 

where 

MI= -0.4074l~Pr’~~ Re3’4x/.xdz4. (62b) 

Figures 7-9 plot the function, 4, defined by equation 
(37) for different Prandtl and Reynolds numbers with 
x0 = 1. The results show that the Nusselt number 
has an exponential decay along the x-direction. This 
reflects the effects of the leading-edge of the heated 
part of the plate. Notice that the Nusselt number 
approaches infinity when x --i O’, and minus infinity 
when x -+ O--. This is similar to the conclusion 
reported by Arpaci [26] although the problem he 
investigated is the fully developed laminar flow of 
a viscous fluid between two parallel plates with a 
discontinuous plate temperature. Since the maximum 
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FIG. 7. Internal boundary layer solution Ibr PF = 0. I. 
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FIG. 8. Internal boundary layer solution li)r 1’~ = I. 
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FIG. 9. Internal boundary layer solution for Pr = 100. 
c/5< = /VU,, / ,:‘Re:,,; I. 

value of the temperature is at the plate for .Y > 0 and 
the minimum value of the temperature is at the plate 
for .y < 0, the fluid temperature is obviously between 
the two. Therefore heat flows into the plate when 

.X < 0 so that Nusselt number is less than zero. On the 
other hand. for .Y > 0. the fluid tempcraturc is less 
than plate temperature and heat Rows from the plate 
so that the Nussclt number is larger than zero. 

5. COMPOSITE EXPANSIONS AND DISCUSSION 

The result from boundary layer theory in Section 3 

is invalid near the leading-edge of the hcatcd section. 

Conversely, the internal boundary layer solution in 
Section 4 is not suitable for the downstream. Since the 
two expansions have a common region of validity for 

the cast .\- > 0. it is quite easy to construct a single 
uniformly valid expansion for the elliptic-to-parabolic 
equation using the concept of composite expansions 

[3]. The additive composition is used here for its 
clcgancc. The rule is that the first-order composite 
expansion of tcmperaturc. II’ is equal to the sum of 
the first-order inner and outer expansions corrcctcd 
by subtracting the inner expansion of the outer cupan- 

sion . O’,. which formulates 

0’ = o+o, -0; (63) 

where 6 is the inner expansion (51) and 0, IS the 

outer expansion (28). On the other hand, substituting 
the relation between the inner and outer variables 

.\’ = ,;(2.y,,),yI;’ 2. ; = )’ 
7’ ‘(At\-,,) 1 

(64) 

into outer expansion (28). then letting 2: approach 
zero, we have 

0; = O,,(X. Y) = E 
1’ 

cxp (-4; 1 Pr D,J) d< 

(65) 

where the lower limit of integration is detincd by equa- 
tion (64). Since the solution of the boundary layer 
equation is zero as .Y < 0, the first-order composite 
expansion of temperature is identical to the innct 
expansion. Taking the derivative ofequation (63) with 
respect to ~3. utilizing the same detinition as in the 
previous two sections. 4: = Nu,~,, / )I Rc,‘: \. WC tind 

(1): = - 0. I8342 Kc,l,,A PI,’ J 

i 

’ /li’(.S’ I) cxp (w) 
X 

~(, ,g;(,s’ ?) ,)J 1 co5 

where the integration is the solution (62) of the inner 
expansion, the series is the solution (36) of the outer 
expansion and the second term in the brackets is the 
first term of the outer expansion. When .Y is very small, 
the series in equation (66) will be dominated by its first 
term so that the summation in the bracket approaches 
zero. Thus the composite expansion, 4:‘ degenerates 
into the first term of equation (66) that is, the inner 
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Re=ltXl 

\ . . . . . . . . . Rc = 1m 

: ___ intygralmethod 

-1.5 -1 -0.5 0 0.5 I 1.5 2 

has 

FIG. IO. Comparison between the first-order composite FIG. 12. Comparison between the first-order composite 
expansion (66) and integral methods (38) for Pr = 0.1. expansion (66) and integral methods (38) for Pr = 100. 

expansion of the cilipti~-to-parabolic equation. In the 
previous section, we proved that the inner expansion 
has an exponential decay near the leading-edge. How- 
ever, if .Y is very large, it converges as the second 
term in the bracket of equation (66) which yields the 
conclusion that </I: degenerates into the solution of 
the outer expansion. The reason for success of the 
composite expansion is based on the application of 
Van Dyke’s asymptotic matching principle in Section 
4. 

Results from the first-order composite expansion 
(66) and integral methods have been plotted in Figs. 
IO-I 2. Table 5 also lists some numerical comparisons. 
From these results, it is obvious that if the length of 
the heated part is small enough, for instance, x = 0.01, 
the boundary layer solution has a very large error. 
For example, when Pr = 0.1, the ratio b”y/4:“’ is I.75 
even though the flow has a high Reynolds number, 
1000. The other interesting phenomenon is that the 
error decreases with increasing Prandtl number. It 
should be noted that all of the results from the pro- 
posed method are larger than predictions from bound- 

8 ;/ ~~~~ Re=lO 

& = 100 

6.- ‘\ 
. . . . . . . . . RI = 1Mo 

~ intcgrJmcthod 
I 

o+- / I I I I T I 

FIG. i I. Comparison between the first-order composite 
expansion (66) and integral methods (38) for Pr = 1. 

ary layer theory. The reason is that the axial diffusion 
augments the heat transfer. ConsequentIy, the Nusselt 
number is larger. 

Considering that the integral method is accurate to 
about 2% in Section 3, equation (66) has another 
simpler form 

. (67) 

This expression is applicable for 0.5 c Pr < 100. With 
the principle of superposition, it is easy to find the 
local Nusselt number for finite heated sections with 
unheated starting and ending lengths. If the length of 
the heated section is 1, the x in the first expression of 
equation (62a) must be changed into x-l; .Q, into 
x,, + 1 and the negative sign into positive which speci- 
fies that heat flows from the plate. The expression 
represents the effects of the trailing cdgc of the heated 
section. The combination of the result and equation 
(66) yields 

4: = -0.1834 &J,];,~ Pr “* 

-t-0.4322 Rc:,,;, Pr' ' 

(0 < x < 1). (68) 

Unfortunately, the integration ofequation (66) or (68) 
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Table 5. Comparison between the titsr-cjrtlcr composite expansion (66) and integral methods (3X) 

Pr = 0. I Pr = I Pr ~ IO0 
\- 0.0 I 0. I I 0.01 0. I I 0.0 1 0. I I 

d: for Rc = IO IO. 190 I. 133Y 0.230 IO.45Y I .4006 0.4727 13.X13 JO21 7.12x 
12.‘) 3 02 I.13 6.16 1.73 I .06 1.75 I .07 I .02 
3.402 0.5269 0.202’) 3.X63 0.90X8 0.4559 x.x’)5 3.x52 7.125 
4.32 I.41 0.98 2.28 I.13 I .02 I.13 I .03 I .tJr! 
I .3x0 0.3973 0. I YY2 2.OY7 0.8337 0.4542 x. 134 3.x35 2.124 
1.75 I .06 O.Yh I.24 I .03 I.01 I .O? I .01 I .02 
0.7XX 0.374’) 0.207x I .6Y7 0.807X 0.4476 7.x79 3.74’) 7.07x 

with respect to s diverges in the finite interval [0, I]. It 

is impractical for a real application to have an infinite 
heat transfer. The reason, as demonstrated in the 

Appendix, is that the singularity results from the dis- 
continuous boundary condition (8). Boundary layer 

theory neglects the leading-edge effects so that the 
average Nusselt number is finite. In other words, there 
is no singularity without axial conduction. The 
present method has revealed the entire thermal field. 
Since the source of the singularity comes from the 
mathematical model, it is not possible to remove the 
singularity in higher approximations. In fact, the tem- 
perature field is always continuous in practical situ- 
ations. The gap between the mathematical model and 
the physical problem can be filled by rebuilding new 
continuous boundary conditions instead of the 
Heaviside step function in equation (8). Currently 
the problem of a small heated section with insulated 

starting and ending lengths is being investigated. 

6. CONCLUSION 

The accuracy of integral methods for the non- 
similarity boundary layer has been reported in Figs. 
3-5 where the maximum error is 2% in the region, 
0.5 < Pr < 100. Therefore, integral methods are 

accurate for most applications if and only if the 
boundary layer theory is valid. If boundary layer 
theory breaks down in some regions, the new govern- 
ing equation (20) is derived by means of a generalized 
principle of least degeneracy. Then the first-order 
composite expansion is obtained in the sense of addi- 
tive composition. The comparison between the expan- 

sion and integral methods can be found in Figs. 10~ 
12. Numerical results (Table 5) show that the error 
depends on the Prandtl and Reynolds numbers as well 
as the length scale of the heated section. It has been 
shown that a Nusselt number 12.9 times that predicted 
with an integral technique is possible. Since the axial 
diffusion augments the heat transfer, the Nusselt num- 
ber from the proposed method is larger than the pre- 
diction using the integral method. The conclusion is 
that the evaluation of heat transfer from boundary 
layer theory is more conservative. In order to accu- 
rately predict the heat transfer from microstructures. 
continuous boundary condition must be used. Cur- 

rently the problem of a small heated section with 
insulated starting and ending lengths is being inves- 

tigated. 
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APPENDIX 

The purpose of this appendix is to show the source of the 
integral singularity. The basic equation examined is for two- 
dimensional steady-state heat conduction, that is, Laplace’s 
equation 

o,, f0,, = 0 (Al) 

where f1 denotes dimensionless temperature. The boundary 

conditions are defined in the semi-infinite region 

H(-o,y)=O; O(co,y)=O; O(x,a)=O; 

0(x, 0) = H(x). (A2) 

With the aid of the Fourier transform, the solution can be 
found as 

-I’ exp (- sy) 1 
~ sm (sx) d.? = { + rr tan ’ 

x 

s 0 
j 

(A3) 

It is easy to show that solution (A3) satisfies Laplace’s equa- 
tion (Al) and the boundary conditions (A2). Taking the 
derivative of the solution with respect to y, the gradient of 
temperature at the plate is 

At the discontinuity, HI + co as x + Of and 0,. --* - ici when 
x + O- which are simiiar to the results from Figs. 7-9. On 
the other hand, the integration from 0 to a finite length with 
respect to X, say 1 in equation (A4) shows that the result 
logarithmically diverges. Using a continuous function f(x) 
instead of the Heaviside function in equation (A2), the solu- 
tion under the new boundary conditions is the Poisson inte- 
gral formula [23] 

(A5) 

If the function f’(s) is defined in an interval, 0 Q s < I, the 
average gradient of temperature at the surface is 

(A6) 

In order to make the integral of equation (A6) finite, j’(0) 
and f(r) must be zero [27]. Physically, this means that the 
temperature at the interfaces between the heated and 
unheated sections of a plate should be continuous. 


